Search results

Search for "specific loss power" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles

  • Hajar Jalili,
  • Bagher Aslibeiki,
  • Ali Ghotbi Varzaneh and
  • Volodymyr A. Chernenko

Beilstein J. Nanotechnol. 2019, 10, 1348–1359, doi:10.3762/bjnano.10.133

Graphical Abstract
  • nanoparticles and dT/dt is the initial slope of the heating curves. Figure 13 shows the fit curve using the Box–Lucas model (solid line) for the x = 0 sample. The SAR value, or specific loss power (SLP), was then obtained by using Equation 10. The SAR value is commonly used to characterize the behavior in
PDF
Album
Full Research Paper
Published 03 Jul 2019

Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics

  • Maria V. Efremova,
  • Yulia A. Nalench,
  • Eirini Myrovali,
  • Anastasiia S. Garanina,
  • Ivan S. Grebennikov,
  • Polina K. Gifer,
  • Maxim A. Abakumov,
  • Marina Spasova,
  • Makis Angelakeris,
  • Alexander G. Savchenko,
  • Michael Farle,
  • Natalia L. Klyachko,
  • Alexander G. Majouga and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2018, 9, 2684–2699, doi:10.3762/bjnano.9.251

Graphical Abstract
  • extraordinarily high r2-relaxivity of 495 mM−1·s−1 along with a specific loss power of 617 W·gFe−1 and 327 W·gFe−1 for hyperthermia in aqueous and agarose systems, respectively. The functional in vitro hyperthermia test for the 4T1 mouse breast cancer cell line demonstrated 80% and 100% cell death for immediate
  • commercial contrast agents due to the high crystallinity and large bulk-like saturation magnetization leading to larger field gradients in MRI. The MPH measurements reveal that the specific loss power (SLP) increases from 10 to 617 W·gFe−1 in water and from 12 to 327 W·gFe−1 in agarose with increasing NP
  • GaAs-based fiber optic probe immersed in the vial containing 1 mL of solution. The heating efficiency of the NPs is quantified by the specific loss power (SLP) determined from the power absorption per unit mass of magnetic material (in W·gFe−1) following a standardized procedure to estimate solely the
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2018

An adapted Coffey model for studying susceptibility losses in interacting magnetic nanoparticles

  • Mihaela Osaci and
  • Matteo Cacciola

Beilstein J. Nanotechnol. 2015, 6, 2173–2182, doi:10.3762/bjnano.6.223

Graphical Abstract
  • consider local dipolar magnetic fields. Then, we obtained the effective relaxation time. The effective relaxation time is further used for obtaining values of specific loss power (SLP) through linear response theory (LRT). A comparative analysis between our model and the discrete orientation model, more
  • frequencies and amplitudes of external magnetic fields for biomedical applications, especially for tumor therapy by magnetic hyperthermia. Keywords: hyperthermia; magnetic nanoparticles; relaxation process; specific loss power; susceptibility losses; Introduction Magnetic nanoparticles are important for
  • , one major issue is to control the parameters of the system, particularly the specific loss power (SLP). SLP is defined as the electromagnetic power lost per nanofluid mass unit. SLP is expressed in watts per kilogram. Recent researches show that the heating process through hyperthermia with magnetic
PDF
Album
Full Research Paper
Published 19 Nov 2015
Other Beilstein-Institut Open Science Activities